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Abstract

Longitudinal impact experiments of thin bars are proposed as an effective mean for understanding the kinetics of
stress-induced phase transformations. We consider on one side the elastic model and on the other side an augmented
theory, which includes the Maxwellian rate-type viscoelasticity with finite instantaneous response and as a limiting case
the Kelvin—Voigt viscoelasticity with infinite instantaneous response. By using the chord criterion, we investigate the
complete set of Goursat and Riemann problems which could arise as a result of dynamic interactions when we consider
a piecewise linear elastic model corresponding to a three phase material. Subsequently we use our Riemann solvers to
construct solutions for the longitudinal impact of two elastic phase transforming bars for a variety of impact conditions.
We focus on the results which can be measured in laboratory experiments like the time of separation of the two bars
after impact, the profile of the particle velocity at the rear end of the target and the stress history at the contact point. In
Part II of this paper we continue with a theoretical and numerical comparative analysis on the wave structure predicted
by our general rate-type approach for the same impact problem.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The motivation of this paper arises from the growing recent interest in understanding the dynamical re-
sponse of materials supporting phase transformation. For instance, shape memory alloys (SMA) have been

* Corresponding author. Fax: +40 21 319 65 05.
E-mail address: cristian.faciu@imar.ro (C. Faciu).

0020-7683/$ - see front matter © 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijsolstr.2005.06.023


mailto:cristian.faciu@imar.ro

498 C. Fdciu, A. Molinari | International Journal of Solids and Structures 43 (2006) 497-522

recently considered for dynamic loading applications due to their high energy absorption capabilities. In
spite of this interest, the existing experimental works on the dynamic behavior of SMAs is rather limited.
One of the well known experimental investigation was done by Escobar and Clifton (1995) by using a shear-
plate impact experiment technique to understand the kinetics of martensitic transformation in single
crystals of Cu—Al-Ni SMA. Propagating phase boundaries were not observed directly due to their low
propagation speed. Instead, their presence was deduced from measurements of the elastic waves at the rear
end of the target plate. Only recently, new impact experiments on the wave propagation in a NiTi SMA rod
has been performed in a split-Hopkinson bar apparatus by Lagoudas et al. (2003) in order to determine the
dynamic stress—strain relationship due to detwinning.

On the other side, both kinetics and dynamics of phase transformations have been recently subjects of
intense theoretical studies (see for instance Chen and Lagoudas (2000), Bruno and Vaynblat (2001), Ngan
and Truskinovsky (2002) and the literature therein). Since different models describe differently the metasta-
ble states, the nucleation of phases and therefore, lead to distinct solutions for Riemann problems, for
example, they are only the laboratory experiments which can validate which is the appropriate one.

We propose in this paper, as a mean for investigating the kinetics of stress-induced phase transforma-
tions the longitudinal impact of bars, one of the simplest dynamic laboratory test, but rich in information.
Indeed, in a single test one can determine: the time of separation between bars after the impact by optical
methods, the particle velocity at the rear end of the target bar by a VISAR interferometry system, the stress
history at the impacted end by piezoelectric wafers, the variation in time of the strain at various cross-
section by using diffraction gratings. The correlation of such measurements allow a better understanding
of the kinetics of transformation. Such kind of experiments have been intensively used a few decades
ago in dynamic plasticity (Bell, 1968; Cristescu and Suliciu, 1982).

The purpose of this paper is to start a complete and comparative theoretical and numerical study of
the predictions of one of the simplest constitutive laws for SMAs, the elastic non-monotone model and
its Maxwellian rate-type dissipative regularization, when we consider longitudinal impact loading
conditions.

Inaugurated by Ericksen (1975) for the static case and by James (1980) for the dynamic case, studies of
elastic bar theory have indicated that the main features of phase transitions in a two-phase material are
predicted by the use of a non-convex stored energy, or, equivalently a non-monotone stress—strain relation.
Physically, the non-convexity of elastic energy reflects the bi-stability of the constitutive elements. This ap-
proach has been extended for the 3-D case (see for instance James, 1981) and there is now a vast literature
on this subject. The usual continuum theory of elasticity, though adequate for characterizing two-phase en-
ergy minimizers, does not, by itself, characterize quasi-static or dynamic processes of a body involving tran-
sitions from one phase to another. This is illustrated by the tremendous lack of uniqueness of solution to
particular initial-boundary value problems formulated on the basis of the usual theory. The multiplicity of
solutions at the continuum level can be viewed as arising from a constitutive deficiency, reflecting the need
to specify additional pieces of constitutive information.

One way to remedy this deficiency is to add two notions from materials science in the continuum setting:
a nucleation criterion for the initiation of phase transition and a kinetic relation between interface velocity
and the driving force of phase transformation (see for instance Truskinovsky, 1987; Abeyaratne and
Knowles, 1991a). These relations can take into account the internal dissipation due to phase transitions.
A second way, is to augment the elastic non-monotone theory by incorporating rate effects of Kelvin—Voigt
type (James, 1980; Pego, 1987; Vainchtein and Rosakis, 1999), and/or effects due to the gradient of strain
(Slemrod, 1983; Truskinovsky, 1985; Abeyaratne and Knowles, 1991b; Ngan and Truskinovsky, 2002). An
augmented theory of this kind possesses its own kinetics due to the dissipative viscous mechanisms
incorporated.

A different rate-type approach of the non-monotone elasticity based on a Maxwell’s type viscosity has
been considered for phase transition phenomena by Suliciu (1989b) and investigated, for instance, in Faciu
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and Mihailescu-Suliciu (1987), Suliciu (1990), Suliciu (1992), Faciu and Suliciu (1994), Faciu (1996) (see
also the literature therein). In these papers it was shown that this isothermal model can describe phenom-
enologically many aspects encountered in the transformation pseudo-elasticity such as the hysteretic behav-
ior in quasi-static strain- or stress-controlled experiments and the nucleation and growth of one phase into
another. Recently, in order to model thermal effects which accompany phase transitions in shape memory
alloys, Faciu and Mihailescu-Suliciu (2002) have extended the isothermal Maxwelian rate-type model by
taking into account the dependence on temperature of the non-monotone stress—strain relation. It was
shown that this model successfully captures in quasi-static experiments the nucleation and evolution of
deformation fronts and the corresponding distribution of temperature fields observed in the laboratory
experiments performed by Shaw and Kyriakides (1997).

In order to do the proposed comparative investigation, in Part I of this paper we perform a detailed
analysis of the wave structure for the elastic model equipped with a corresponding viscosity criterion for
admissible solutions, since it is missing in the literature, while Part II is addressed to the wave structure
analysis of the rate-type model. We investigate this problem in an one-dimensional and isothermal setting
since this study can provide an important insight into the wave structure and can help to interpret labora-
tory results on phase transforming materials. In a future work, we extend the analysis to account for ther-
mal effects.

The paper begins in Section 2 with a brief overview of the balance laws as well as the dissipation inequal-
ity for smooth and discontinuous fields. In Section 3, based on experimental facts for shape memory alloys
(Otsuka et al., 1976) we describe the constitutive assumptions for a solid which can exist in three phases: a
parent phase (austenite) and two variants of martensite. Some aspects related to the non-unicity of weak
solutions for the elastic system are reminded. We propose a general rate-type constitutive equation which
includes viscosity, a rate sensitivity parameter and an instantaneous response of the material as a conve-
nient alternative for the description of dynamic phase transitions in a three phase material. Moreover, this
formulation includes both the Maxwellian rate-type model when the dynamic Young modulus is finite and,
as a limiting case when the dynamic Young modulus becomes infinite a generalized form of the Kelvin—
Voigt model, used to describe phase transition phenomena in a phase transforming bar by Pego (1987),
Vainchtein and Rosakis (1999) and Ngan and Truskinovsky (2002). According to the travelling waves anal-
ysis performed in Part 11, by using our general rate-type approach, we obtain that a propagating strain dis-
continuity for the elastic system is admissible if and only if the well known chord criterion is satisfied, while
any stationary strain discontinuity is unconditionally admissible.

In Section 4 we consider the simplest initial and boundary value problems for the elastic system, i.e., the
Goursat problems. We determine, using the viscosity criterion, the wave propagation solutions to the com-
plete set of Goursat problems which could arise as a result of dynamic interactions. The unique solutions of
these problems are used as building blocks in solving the Riemann problems for all possible initial data. In
Section 5 we use our Riemann solvers to construct exact solutions for the longitudinal impact of two elastic
phase transforming bars. Thus, we consider at the initial moment a bar called “target” impacted at one end
by another bar called “flyer”” which is moving with a constant velocity V. After impact the two bars remain
in contact and move together until a time 7g called time of separation. This time corresponds to the moment
when the first tensile wave arrives at the point of contact. We determine critical values of the impact velocity
such that a phase boundary be induced in the bars. We explore the interactions of the unloading elastic
wave reflected at the rear end of the target with the phase boundary propagating inside the target and
we determine critical values of the impact velocity such that this phase boundary propagates backward,
or remains stationary or propagates forward after interaction. One focuses on two aspects which are precise
indications for the appearance of a transformed zone at the contact point, the velocity time profile obtained
at the free end of the target and the time of separation between the bars. For instance, we show that the
transition from an elastic impact to a phase transforming impact induces an abrupt change of the time
of separation between the two bars.
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2. One-dimensional motion of thin bars

We consider a bar 4 with uniform cross-section and length L in an unstressed reference configuration
which corresponds to a defined phase of the material. A longitudinal motion of the bar is characterized by a
function x = (X, t) which gives the present position x of a particle in terms of the time ¢ and its initial coor-
dinate X in the reference configuration. The function y(X,¢) is assumed to be injective and bi-continuous
with respect to X. Whenever (X, ¢) is differentiable we denote by ¢(X,¢) = g—)’( — 1 > —1 the strain at point
X and by v(X,t) = %; the particle velocity.

In studying the propagation of longitudinal stress, strain and velocity waves in thin bars it is common to
make a “one-dimensional” approximation in which the only non-vanishing stress component is the longi-
tudinal one which is assumed to be uniform in a cross-section. Since the bar is thin, radial inertia effects are
neglected. We denote by o = (X, ¢) the nominal stress (longitudinal force per unit area in the reference con-
figuration). At points (X, ) where v, ¢ and ¢ are smooth functions the balance of momentum in the absence
of body forces and the balance of mass have the form

dv 0o O Ov

S W

with ¢ being the (constant) mass density in the reference configuration.
If across a curve X = S(7) in the (X, 7)-plane at least one of the quantities v, &, ¢ has jump discontinuities
the balance of momentum and the continuity of the motion y require

oS[e] +[a] =0,  S[e] +[1] =0, (2)

where S(t) denotes the speed of propagation of the discontinuity, and for any function /= f{ X, t) we have
used the notations [f)(1) = £ (1) — £~ (1) = AS(¢)+.1) — fIS()—.7). Such a curve is usually called a strain dis-
continuity (or strong discontinuity). Let us note that independently of any constitutive assumption a station-
ary strain discontinuity is one for which

[6] =0, [1]=0, [#0 and §=0, (3)

while a propagating strain discontinuity is one for which
0] £0, []#£0, [[£0 and o8 = % >0, @)

The second law of thermodynamics in this isothermal setting requires that the constitutive assumptions
have to be compatible with the inequality

oy < g (5)

where  is the (Helmholtz) free energy function.
Inequality (5) is equivalent with

0 1, 0
_ — <
o5, (v +57) < o), )
wherefrom we get that across a strain discontinuity the following dissipation inequality has to be satisfied
: ot +o
p=300)(e) - 571 0 )

Let us note that across a stationary strain discontinuity the dissipation inequality is always satisfied and
moreover, there is no dissipation.
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3. Constitutive assumptions—three phase materials

Starting with the paper by Ericksen (1975) the theory of elasticity with non-monotonic stress—strain rela-
tion ¢ = ocq4(e), or equivalently with non-convex free energy function, has been used to describe the main
features of phase transformations in solids (see for example, James, 1980, 1981; Abeyaratne and Knowles,
1991a,b, 1993; Pence, 1992, and the literature therein).

For a three-phase elastic material the simplest non-monotonic stress—strain relation is given by

Ese — o3 for e, <&
—FEye+o0, foreg, <e<e,
0 =0eq(e) =< Ei¢ for —e, <e<g (8)
—FEye—o0, for —g, <e< —g,
Eze+ 03 for ¢ < —g,

where in Fig. 1

6, =FEie, >0, 0,=—Exen—¢e)+Ee, 0<e <ép,
0y = (El +E2)8a > 0, 03 = (E3 +E2)6m — (El +E2)8a = FEz¢, — 0y

This constitutive relation is viewed as corresponding to a material which can exist in an austenite phase
and in two variants of martensite. Ey = const. > ( is called the elastic modulus of the austenite phase, while
E5 =const. > 0 is the elastic modulus of the martensite phase since the variants of martensite are crystal-
lographically equivalent. —E, = const. <0 is called the softening modulus and it corresponds to the unsta-
ble phases of the material.

Indeed, relation (8) reflects some experimental facts on materials capable of existing in more than one
solid phase as shape memory alloys for instance (Otsuka et al., 1976). Thus, during a uniaxial test of an
oriented single crystal specimen the material is found to remain in the austenite phase (cubic lattice) for
sufficiently small values of the strain, in a martensitic variant (orthorhombic lattice with long side of crystal
parallel to the tensile axis) for sufficiently large tensile strain and in an another orthorombic martensitic
variant (orthorombic lattice with the long side of the crystal normal to the tensile axis) for sufficiently large
compressive strain.

Thus, according to relation (8) we say that a particle X at a time ¢ is in the austenitic phase <7, or in the
martensitic variants 4", or ./~ if the value of (X, ) lies in the interval [—e,, &,], or [&,,,20), or (—1, —¢,,],

c
oA
Ogfeee £
: 3
(e f\\ *Ez
El \\
oml-- S N
—-£m —€3 : :
: : €a €m e
............ e —om
N :
N N
Esg -Ex N
N _Ga

Fig. 1. The three phase elastic material: ¢ = g¢q(¢).
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respectively. If g( X, ¢) belongs to (&,,¢,), or (—&,, —&,), we say that the particle is in the unstable phases
(spinodal regions) .4, or .#~, respectively.

In the present setting a strain discontinuity may be now either an elastic shock wave, or a (propagating or
stationary) phase boundary, according to whether the particles separated by the discontinuity are in the
same phase, or in distinct phases.

Let us note that the second law of thermodynamics (5) ensures for the elastic model the existence of a
unique (modulo a constant) free energy function y = i4(¢) with the property

Ay (2)

Oeq(€) =0 G e>—1, 9)

and leads to a null dissipation for any smooth field e. On the other side, according to (7) for any strain jump
the following entropy inequality has to be satisfied

Da(s*, ) = $d(s*,+7) = s( [ outons - ol oale)

+

(" — s)) > 0. (10)

Therefore, a dissipation can be induced by a propagating strain discontinuity. In other words, strain dis-
continuities constitute sources of dissipation in elastic nonlinear materials. It is useful to observe that
A(¢",¢7) is just the signed area between the graph of 0cq(e) and the chord which joins (¢7,0.4(¢7)) with
(6", 0eqle):

Let us also note that the elastodynamic system (1) and (8) is now of mixed type, i.e., hyperbolic for
g€ (—1,—¢,]U[—&4e,] U[en 00) and elliptic for ¢ € (—¢,, —&,) U (€4, €). Therefore, from mathematical
point of view the Cauchy problem is ill-posed in the sense of Hadamard in the elliptic unstable regime,
i.e., when phase transitions are involved. From physical point of view this is a strong indication of a con-
stitutive deficiency of the dynamic non-monotone elasticity which suggests that additional constitutive
information are needed.

Indeed, as in the case of monotone nonlinear elastic model there is a lack of uniqueness of the weak solu-
tions for initial-boundary value problems. That is caused by the fact that jump conditions (2) admit too
many solutions of which only some have physical meaning. Additional conditions termed admissibility
criteria, are therefore sought to eliminate physically inadmissible solutions.

Similar to gas dynamics, for materials for which stress is strictly convex or strictly concave but mono-
tonically increasing function of strain, the entropy inequality at shock fronts (10) is sufficient to ensure
uniqueness of weak solutions to the Cauchy problem for the corresponding system of conservation law
(see for instance Lax, 1971).

For a non-monotone elastic constitutive law the dissipation inequality (10) across a strong discontinuity is
no longer sufficient to deliver uniqueness for the Cauchy problem, that is the entropy admissibility criterion
is too weak. This situation reflects in fact the uncomplete physical description of phase transition phenom-
ena by the non-monotone elasticity. Since the motion of a phase boundary is a strongly dissipative process,
a dissipative mechanism has to be incorporated in the constitutive description. One way to remedy this defi-
ciency, both in quasi-static and dynamic cases, is to supplement relation (8) with a kinetic relation that con-
trols the rate at which the phase transition proceeds and of a nucleation criterion (see for instance
Truskinovsky (1987), Abeyaratne and Knowles (1991a) and the literature therein). A second alternative
way, which has a long tradition, to resolving this constitutive insufficiency is to embed the elastic bar theory
as a special case of a broader theory which usually include viscosity of Kelvin—Voigt type and/or strain gra-
dient effects (see for instance James (1980), Slemrod (1983), Pego (1987), Abeyaratne and Knowles (1991b),
Ngan and Truskinovsky (2002) and the literature therein). An additional advantage of this second ap-
proach is that it does not require a separate nucleation criterion. Moreover, it possesses its own kinetics,
since the material instability phenomena incorporated automatically lead to the formation and evolution
of phase boundaries.
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We adopt in this paper the second point of view mentioned above and we will consider instead of (8) an
augmented theory described by the following general Maxwellian rate-type constitutive equation

Oo Oe E p
b2 Lo a0 (0 - o) an

where 0.4(¢) is a non-monotone stress—strain relation of type (8) called the equilibrium curve of the rate-type
model. E = const. >0 is the dynamic Young modulus, ). = const. >0 is a rate sensitivity parameter and
i = const. > 0 is a viscosity coefficient. For A =1, uis a Newtonian viscosity coefficient, % is a relaxation time
of the model (of kinetic origin), while £ = % is usually called Maxwellian viscosity coefficient. When u — 0
this rate-type constitutive equation can be seen as a rate-type approach of the elastic model in a sense which
will be presented in the second part of this paper (Faciu and Molinari, 2005).

This rate-type constitutive equation has the capacity to describe the kinetics of phase transformation and
it has been investigated in quasi-static experiments by Suliciu (1992), Faciu and Suliciu (1994) and Faciu
(1996). As we illustrate in Part II, the new parameters u, 4 and E describe in fact the kinetics of the growth
of phases and should be connected with the time of growth, or time of nucleation of microscopic theories of
phase transitions. The constitutive relation (11) includes as a limiting case for £ — oo and 4 = 1 the Kelvin—
Voigt viscoelastic model which has been considered by James (1980), latter by Pego (1987) and recently by
Vainchtein and Rosakis (1999) in relation with phase transformations in solids.

In investigating propagating phase boundaries in elastic fluids or solids some admissibility criteria in-
tended to generalize the entropy inequality and designed to select physically relevant solutions have been
proposed. For instance, Dafermos (1973) and Hattori (1986) proposed and used a maximum entropy rate
admissibility condition. Slemrod (1983) derived admissibility conditions by embedding the theory of van
der Waals fluid in a higher order theory that includes the effects of both viscosity and capillarity. James
(1980) and Pego (1987), by using a Kelvin—Voigt viscosity approach, have studied the implications of such
conditions in the setting of ¢lastic bar theory. Suliciu (1989a, 1990) used a Maxwellian viscosity approach
for a van der Waals fluid.

In this context, the problem of the stable, unstable or of the so-called “metastable states” and their
nucleation, is still an open one. Indeed, while the entropy admissibility criterion is too weak in this case,
the standard Kelvin—Voigt viscosity criterion (discussed by James, 1980; Slemrod, 1983; and Pego, 1987)
is considered by some authors as too restrictive (strong) since it rules out propagating phase boundaries
near the equilibrium co-existence line. Therefore, they introduce some variants of gradient elasticity or
capillarity effect (see for instance Truskinovsky (1985), Abeyaratne and Knowles (1991b), Ngan and
Truskinovsky (2002) and the literature therein).

Since different selection criteria may furnish different unique solutions to a Cauchy problem, only sys-
tematic experimental investigations as for example those performed by Escobar and Clifton (1995) could
decide which is the physical relevant one. Therefore, the main goal of this work is to study the predictions
of the two constitutive models, the elastic and the rate-type one, when we consider the longitudinal impact
of two phase transforming bars and to suggest an experimental investigation program which could clarify
some aspects connected with the dynamic nucleation of phases.

4. Riemann and Goursat problems—viscosity criterion

In the isothermal context for van der Waals fluids, the Riemann problem has been discussed for example
by Slemrod (1983), Hattori (1986) and Suliciu (1989a, 1990) while for non-monotone elasticity by James
(1980), Pego (1987), Abeyaratne and Knowles (1991a) and Pence (1992).

An augmented theory which takes into account the internal dissipation is often called dissipative regu-
larization of the elastic model. It introduces an internal structure in a phase boundary and replaces the
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sharp interfaces by transition layers of finite thickness. A standard approach to derive a selection criterion
for admissible waves within the elastic theory is to identify as admissible those waves which arise in the
frame of the augmented theory in the limit of vanishing viscosity. This approach, investigated in the second
part of this paper (Faciu and Molinari, 2005) asserts that a strong discontinuity for the elastic model is
admissible if and only if the strains ¢~ and &' on either side of the discontinuity can be smoothly connected
by a travelling wave constructed within the augmented theory. Our analysis establishes that the generalized
Maxwell’s type viscoelastic approach (11) leads to the same admissibility condition as that obtained by
Pego (1987) using the Kelvin—Voigt viscoelastic constitutive equation.

This viscosity admissibility criterion asserts: (i) a propagating strain discontinuity (S # 0) is admissible if
the chord criterion is satisfied and (ii) a stationary discontinuity (S = 0) is admissible unconditionally. The
chord condition is fulfilled if and only if the chord which joins the points (¢, aeq(ﬁ)) to (&, oeq(e7)) lies
below (above) the graph of g.q(¢) when (e" — £)S >0 (or (et —&)S < 0) for ¢ between ¢ and & (see
for instance Fig. 2).

In the present paper we consider a piece-wise linear equilibrium curve given by (8) where we suppose
additionally that

O, + 04
Em + &4

E, = E; > =F>0. (12)
This situation is called the subsonic case (Fig. 2) since the speed of any admissible phase boundary will be
alway§210wer than thze speed of propagation of the elastic shock waves of either of the homogeneous phases,
i.e., 08" < E;and ¢S < Ej. Let us note that usually for shape memory alloys £, > Ej;. The supersonic cases
E| > F> E; (Fig. 3a) and F < E| < Ej3 (Fig. 3b) will be discussed elsewhere.

We suppose additionally that o,, > 0, ruling out for the present purposes the possibility that the bar can
be in the martensitic phase at zero stress.

We use the viscosity criterion as selection criterion for weak solutions of the elastic system and we con-
struct the corresponding unique solutions. First, we solve the simplest initial-boundary value problem for
the elastic system (1) + (8), i.e. the Goursat problem. These are building blocks in solving the Riemann
problem for all possible initial data. We give the complete description of the solution of the Riemann
problem in order to illustrate in Section 5 how it can be used in investigating a laboratory experiment, that

Eg

E

ef €

E3

Fig. 2. Subsonic case E; > E; > F. Admissible waves connecting states (s*,acq(zz*)) (empty circle) and (&7, 0.q(¢7)) (filled circle) for
o ;
¢ <¢ and § > 0.
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Es

Fig. 3. (a) Supersonic case E| > F > Ej;. (b) Supersonic case F < E| < Ej.

is the longitudinal impact of two phase transforming bars. Moreover, the solution of the Riemann prob-
lem is also a keystone in constructing a Godunov type numerical scheme for the elastic system (LeVeque,
1990).

4.1. The Goursat problems

The right Goursat problem in stress addresses wave propagation in a semi-infinite space X > 0 for the fol-
lowing initial and boundary condition

(6,0,0)(X,0) = (er, 0r = 0cq(r), vr), for X >0, and ¢(0,¢) = ¢", for t > 0, (13)

where eg, vz and o* are given values.

Note that in the initial condition (13) it is superfluous to give the stress since this one is related to the
strain through the elastic law (8). However, for the rate-type system (1) and (11), to be examined later, ini-
tial conditions have to include the stress. Thus the form (13) of initial condition is used for the homogeneity
of the presentation.

As usual the solution is sought in the form of self-similar solutions, i.e., (¢, o, v)(X, ?) = (¢, g, v)(&), where
¢ =42 The strong discontinuities have to satisfy jump conditions (2). We distinguish the following cases
depending on the initial value ¢z and of the applied stress o*.

Case (M) &g € [¢,,, 00)—material initially in phase .#*

(Ml) o* € [O-m: OO)

The material response is linear elastic with modulus E3. The solution consists of an elastic shock wave

)7‘: Cy; = E—o‘ which separates the constant states (¢g, oz, vg) and (¢*,0*,0*) (see Fig. 4) where
o — og o+ o3
vt =vp — & =——">5¢,. 14
: oCs Es (14)

(M) 6* € [—04,0.).
According to the chord criterion there is a unique solution which consist of an elastic shock wave
% =C; = 573 which separates the constant states (¢g, o g, vg) and (&,,, 6,,,v,,) and a phase boundary moving

with the speed C, = /£ )

e which relates the states (e, 0,,,0,,,) and (&*, a*,0*) (see Fig. 5) where

Om — OR

1 E; o oy,
Uy =V —————, V' =0, + 0 —0y)| =0"—03—0, ), & =—<—. 15
K 0C; 0C; \/( ><E1 ’ ) E, E (15)
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t
O]
e R
G*
O* e 3
Cs
€R OR VR
€R OR VR X
a b

Fig. 4. Case M;: (a) Self-similar solution: elastic shock wave in phase .#". (b) Stress-strain states ahead and behind discontinuities.

t Cp
gx !
ox 1 R
v*l
ox 1 - =
/ €m Om Vm
! =
! €p O
R OR VR
€R OR VR X
a b

Fig. 5. Case M: (a) Self-similar solution: Elastic shock wave precursor and a propagating phase boundary transforming the material
from .4 to .. (b) Stress—strain states ahead and behind discontinuities.

(M3) o* € [_Jfa _Ja)‘

The pair (—¢g —ay) corresponds to the intersection point between the graph of ¢ = o.4(¢) and the straight
line connecting the points M(s,,, 0,,) and A(—e,, —a,). According to the chord criterion we get the following
wave structure. There is an elastic shock wave precursor % = C3 which connects the constant states

(¢r,0r,vg) and (&,,,0,,,0,,) and two propagating phase boundaries. The first one moves with the speed

Cr= 0‘(’8'—1";) = \/g and relates the states (&,,,0,,,0,,) to (—&,, —04,0,) and corresponds to a .4/ — o/

phase transformation, while the second one moves with the speed C, = £y (o +00)

state (—e&,, —0,,0,) from phase .« into (¢*,0%,0*) in phase .#~ (Fig. 6), where

and transforms the

1
Uy =Up+—(0,+0,), V' =0,+—
‘ ch(a ) ‘oG

(My) 0* € (—00,—0))

The solution consists of an elastic shock wave precursor in .#" phase which separates the constant states
E3(0m—0*)

Worron—a > Cr

which connects the constant states (&, 6,,, U,) to (¥, 0%, 0%). It corresponds to an impact .#" — .4~ in-

duced phase transformation (Fig. 7). Here

E -
(0" + 0,) (a* — 03 —|—E—jaa), & :6763 > —¢. (16)

(er,0R,Ug) and (&, 0,,,0,,) and of a phase boundary propagating with the speed C, =

V@203 + 0, — ) (0, — ), & =7 B —é&r. (17)

vt =uv, + 7
3

1
0G5
Therefore, we can build two functions denoted Hj‘f and fo , which for given (eg,0r,0r),ér = &, associ-
ate to the applied stress ¢* € R the velocity v* = v(0, #) and strain &* = (0, ), solution of the Goursat prob-
lem (13) at the boundary (X = 0,7 > 0). By removing the index * these functions can be written as follows:
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Fig. 6. Case Mj: (a) Self-similar solution: Elastic shock wave precursor and two propagating phase boundaries transforming the
material from .#* to .o/ and from .« to .4~ . (b) Stress-strain states ahead and behind discontinuities.
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Fig. 7. Case My: (a) Self-similar solution: elastic shock wave precursor and a high speed .#* — .4~ propagating phase boundary. (b)
Stress—strain states ahead and behind discontinuities.

M . _
v=Hy (05 er, 08 = E3eg — 03, 0g)

& = 56 (0 — 0r) + 5 \/(0 — 0u) (0 — 6, = 203), 0 < —ay,

E3

UR—ﬁ<O'm—O'R)—FE(O'm-i-O'a)—‘rﬁ\/(ﬂ—‘rﬁa)(U-‘rElO'a—O'g), -0, <0< —a,,

1 1 Es
UR_E(O-m_O-R)+E\/(O—_Gm)(5_lo-_am_63)> _Ga<a<6ma

1
[% *E(O—*GR)a O-mgo-
L
E3

¢ =Gy (0;er, 08 = Exeg — 03,08) = Ella, —0,<0<0, . (19)

(6 —03), 0<—a,

g(0+a) o,<0

Note that function HY is a continuous and strictly decreasing function of ¢, thus it is invertible. At points
o = 0,, and ¢ = —a, the graph presents angular points with left and right vertical slopes. On the other side,
function G) is discontinuous at g,, and —a,. This property reflects the strain intervals which are not al-
lowed for a phase transformation by the chord criterion.

We can also consider the right Goursat problem in velocity when instead of giving ¢* at X =0 for 1 > 0 in
(13) we prescribe a constant velocity v*. It is obvious that this problem has a unique solution too, which
follows immediately by using functions #} and G due to the one-to-one correspondence between v*
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and o*. Let us note that the wave structure can be also immediately determined using the properties of
functions HY and Gy .

Case (A) ¢r € [—¢4 6,—material initially in phase .o/

The wave structure is again determined by using jump relations (2) and the chord criterion. We write here
only the functions H}i and GIA; which for fixed initial data ez,0 g = E1&g, vg associate to an applied stress ¢* the
values v* and &*, where v* = v(0,7) and ¢* = &0, ¢) for ¢ > 0. By removing again the superscript * we have:

v;ﬁ—ﬁ(a,g—&—aa)—&—ﬁ\/(a—i—aa)(a—ag-i-g—:aa), o< —0g
U:H;(O-;ERvo'R:ElgR;UR): v —f(a—ak), —0, < 0 < 04, (20)

Vg + 3¢ (0r — 04) — i\/(oo'a)(aJrogg—?aa), 0, < 0,

5 (0—03), 0<—a,

SZG;;(G;SR,GR :E18R,UR): ELIO', —0q4 <G<O—aa (21)

Ei3(0+63), g, < 0.

Reciprocally, by knowing functions H and Gj and the position of ¢ with respect to —a, and g, we can
immediately determine the wave structure of the Goursat problem. Thus, if ¢ > ¢, the impact produces an
elastic shock wave in austenitic phase propagating with speed C; = \/E|/¢ and a phase boundary propa-

gating with speed C,(g) = % transforming the material from phase .o/ to phase .#" (Fig. 8a and
R a

b). If ¢ € [—0,,0,] then the impact condition leads to an elastic shock wave in austenitic phase propagating
with speed C| = \/E;/¢ (Fig. 8c and d). If 0 < —0, we get an elastic shock wave precursor with speed

Cy = \/E1 /o and a phase boundary propagating with speed C,(c) = % transforming the material
from phase .7 to phase .#~ (Fig. 8¢ and f). S

Let us note that H7 is also a continuous and strictly decreasing function of ¢ realizing a one-to-one cor-
respondence between the applied stress ¢* and the resulting velocity v* at the boundary (X =0, > 0). As a
consequence the right Goursat problem in velocity has a unique solution, too. On the other side, function G
has a finite jump at points o, and —a,, describing in this way the strain intervals which are not allowed by
the transformation according to the chord criterion.

Case (M) &g € (—1,—¢,,]—material initially in phase .4~

The solution is obtained in a similar way as in the case (M). We write here only the functions H M and GM
which for fixed initial data (g, 6eq(er) = E3eg + 03,0g) associate to an applied stress o* the values v* and s*
where v* = v(0,¢) and &* = &0, ¢) for > 0. These are:

v :HR (0;6r, 08 = E3er + 03, 08)

Uk—ﬁ(U—GR), o< —o,

vRJrac}(aeraR)—glC}\/(a+am)(§fa+am+a3), —o, <0< 0,

_ (22)
vr + 5 (O + r) = 3 (On + 04) — ﬁ\/(o—aa)(a—ﬁ—fafrag), 0, <o <oy
UR+QC (0 + or) oc\/ o+0u,)(0+0,+203), o,<0
5(0—0), o< -0,
¢ =GM(036p, 0p = Eség + 03, 0p) = 70, —0,<0<a, (23)
zo+ay), o.<o
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Fig. 8. Case A: (a), (c), (e) Self-similar solutions. (b), (d), (f) Stress—strain states ahead and behind discontinuities.

From relations (22) and (23) we can read the following wave structure. If ¢ < —a,, there is only an elastic
shock wave propagating with the speed Cs. If ¢ € (—a,,,d,] there is an elastic shock wave precursor which
propagates with speed C; into the semi-infinite space X > 0 followed by a .#~ — A transformation front

propagating with the speed C,(g) = j;(jzfg)) When o € (6,,0y], then an elastic shock wave in the .4~
phase is followed by two transformation fronts. The first one propagates with the speed C, = %

transforming the material from phase .#~ to phase .«/. The second one propagates with the speed

C,(0) = % < Cy and transforms the material from the austenite state (e,,0,) to a state in .4~
phase. When ¢ > o, then the elastic shock wave precursor in the .4~ phase is followed by a high speed prop-

% > C; which transforms directly the material from .4~ to ./#*

agating phase boundary C,(c) =
phase. _

Let us note that function H}' is a continuous and strictly decreasing function of o, thus being invertible.
At the points ¢ = —g,, and ¢ = o, the graph presents angular points with right vertical slopes. On the other
side, function GRM is discontinuous at g, and —a, thus reflecting the nature of the phase transformation
according to the chord criterion.

The solution of the left Goursat problem in stress
(¢,0,0)(X,0) = (&1, 00 = geq(er),v1), for X <0, and ¢(0,7) = ¢, for ¢t > 0, (24)
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where ¢;7,0; and o* are given values, can be constructed in the same way as for the right one. The expression
of the functions v* = H! (0% 61,0, = 0eq(e),v.) and & = G} (0361, 0, = 0eq(er),vr),i € {M,A,M} which
associate to the constant boundary condition ¢* the values v* = v(0,7) and ¢* = ¢(0,¢) for ¢ > 0, respectively,
are obtained from relations (18)—~(23) by replacing R into L, C, into —C), C; into —C3, Crinto —Crand C,
into —C,. In this case the curves v* = H} (0% 61,0, = 0eq(51),01),i € {M, A, M} are continuous and smctly
increasing, being thus invertible. As a consequence the left Goursat problem in velocity has always a unique
solution, too.

4.2. The Riemann problem

The Riemann problem consists in finding the weak solutions of the elastic system (1) and (8) in the half
plane z > 0 of the (X, ¢)-plane that satisfies the following conditions

(6,0,0)(X,0) = (er,00 = geqler),vr) for X <0, (25)
25
(8, o, U)(X7O) = (8R7 OR = O'eq(ﬁg), UR) for X >0,

where (¢7,v7) and (gg,vg) are given values.

We can view the Riemann problem as consisting of two Goursat problems, a right and a left one, sub-
mitted to the condition that across the material surface X = 0 the stress and the velocity coincide for ¢ > 0.
Indeed, according to relations (3) only the strain may suffer a jump discontinuity across the vertical line
X =0, allowing us to describe stationary phase boundaries.

The solution of the Riemann problem is obtained by intersecting in the 6—v plane the curves
v=H}(0561,0, = 0eq(er),vr) and v = Hk(0;6r, 08 = 0eq(ér),vr), i € {M,A,M} which pass through the
points (oz,vr) and (o7,v;), respectively. Since the first one is strictly decreasing and the second one is strictly
increasing it follows that they meet always each other in a single point (¢*,v"). Thus the uniqueness of the
solution of the Goursat problems ensures the uniqueness of the solution of the Riemann problems with re-
spect to the chord criterion. Moreover, as we have already seen in the previous section, the form of the
graphs of functions v = H) (36,0, = 0eq(er),vr) and v = Hy(0; ér, 6r = 0eq(€r), vx) contains the wave
structure corresponding to the Riemann problem which can be read out easily. The procedure will be exem-
plified in the following when investigating the longitudinal impact of two bars.

5. Longitudinal impact of two bars—exact solution

Experiments with longitudinal impact of elastic and plastic bars have been intensively investigated in the
sixtieth and seventieth years (see for instance Bell (1968), §4.28; Cristescu and Suliciu (1982), Chap. IV and
the literature therein). Such kind of experiments can be used to study the kinetics of phase transformation
in shape memory alloys, too (see for instance the pressure-shear plate experiments reported by Escobar and
Clifton, 1995).

Consider two bars of the same phase transforming material. One called flyer (projectile bar) is shot out
from an air gun with known velocity V}, and travels freely to the right until it impinges a bar at rest called
target. We denote by L the length of the flyer and by / the length of the target and we suppose L > /. The left
end of the flyer and the right end of the target bar are stress free. After impact the two bars remain in con-
tact and move together until a time zg called time of separation. This time corresponds to the moment when
the first tensile wave arrives at the point of contact X = 0. Indeed, since the two bars are not glued at the
impact face X = 0 they can not support a dilatational wave and consequently they have to separate. After
separation we have to consider at X = 0 free stress end conditions for both bars.
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Thus, the initial-boundary value problem to be solved is the following:
(¢,0,0)(X,0) = (0,0,Vy) for X € [-L,0], (¢,0,v)(X,0)=(0,0,0) for X € (0,/], (26)

o(—L,t)=0 and o(/,¢) =0, for ¢>
a(0—,1) = o(0+,¢) and v(0—,7) = v(0+,¢), for ¢€]0,t), (27)
d(0—,¢) =0 and o(0+,7) =0, for ¢

The time ¢5 has to be determined when constructing the solution, being the first time when o(—,?) or o(0+, ¢)
first becomes positive.

For simplicity we consider in the following the case E| = Ej, i.e. the elastic modulus of the austenite
phase .« is equal with the elastic modulus of the martensite variants .#*. In order to describe the solution
of the initial-boundary value problem (26) and (27) for the elastic system (1) and (8) we use a time-distance
diagram of wave propagation in the flyer and target after impact as in Fig. 10a or Fig. 11a. It is obvious
that at time ¢t = 0 we have to solve a Riemann problem with the constant data (26) around X = 0. The solu-
tion at X = 0, > 0 and the wave structure is obtained by intersecting the fixed curve v = H%(0;0,0,0) pass-
ing through the point (¢ = 0,v = 0), given by (20), with the curve v = H{(;0,0, V), passing through the
point (¢ = 0,0 = V), obtained from the same formula by replacing C; to —C; and R to L, (Fig. 9), i.e.,

1 5 __1_ _ _
Vo \/EG“ \/E\/((H—Ja)(a 03+0,), 0<-—0,

v=H%(3;0,0,V,) = Vo+ﬁ0, —0, <0< 0, (28)
Vo—}—\/_(ra —\/ Je+oy—o0,), 0,<0

\/lFl'O-a—i_ /'LE] \/(O-+Ga)(o-_0-3+0'a)’ O'< _O-a

v =H%(c;0,0,0) = _7\/1-)5-107 -0, <0< 0, (29)
|

\/Eaa \/E\/(G—Ga)(ﬂ-i-%—%), 0, <0

/ " g L

v=Hi:0,0,0)

a

Fig. 9. Solution of the Riemann problem at X =0 and ¢> 0. (a) Case ¥, < V,;—no phase transformation (encircled numbers
correspond to Fig. 10a). (b) Case V> V,,—impact-induced phase transformation (encircled numbers correspond to Fig. 11a).
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Fig. 10. Elastic linear impact (¥, < Vpn). Capital letters denote stress—strain states; encircled numbers denote stress—velocity states in
Fig. 9a. (a) +—X diagram, (b) stress—strain states ahead and behind discontinuities.

The impact-induced wave structure depends on the magnitude of the velocity V, of the projectile. It is
important to note here that this appears linearly in the expression of function v = H%(a;0,0, V).
(a) Elastic impact. 1If

20,
VOE

the impact between the two bars is only elastic linear. Indeed, from (28) and (29) we get that condition (30)
is equivalent with H7(—a,;0,0,V,) < H4(—0,;0,0,0). Therefore, the two curves meet each other in their
linear part (Fig. 9a) which means that the two bars behaves linearly elastic during the impact. The solution
of problem (26) and (27) represented in the time-distance diagram Fig. 10a is:

V() < Vph =

(30)

O« (6=0,6=0,0="V,), O-(2)«< (¢6=0,6=0,0=0),

= Vo 0CiVy Vo Vo oCiVy Vo
B- = —— = — V =— B- = — = V =—1].
® < (8 2¢,°° 2 2)’ @ (8 20,°" 2 T2

The time of separation is tg = é—Ll and corresponds to the arrival time of the elastic unloading wave reflected
at X=—L.

(b) Impact-induced phase transformation. 1f
20,
2

Vo> Vph = (31)
a phase transformation is induced in the neighborhood of the impact face. This result is in agreement with
what experimentally is known, that is, if the impact velocity is sufficiently large a new phase nucleates and
grows in the phase transforming material. In the case of the elastic model with chord condition as selection
criterion this value is given by the critical value (31). It is thus obvious that, according to the viscosity cri-
terion, the dynamic nucleation of a new phase is associated with the attainment of the maxima/minima of
the equilibrium curve.

Indeed, condition (31) is equivalent with relation H{(—0,;0,0, V) > H4(—0,;0,0,0). One reads out eas-
ily from Fig. 9b that two elastic shock wave precursors propagating left and right with speed C, are fol-
lowed by two symmetric propagating phase boundaries. The solution of the Riemann problem at the
point O(¢ = 0,X = 0) is described below and illustrated in Fig. 11. There are five regions in the X—¢ diagram
where the solution is the following:
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Fig. 11. Shock-induced phase transformation (v > V,,;,). Capital letters denote stress—strain states; encircled numbers denote stress—
velocity states in Fig. 9b. (a) —X diagram, (b) stresss—strain states ahead and behind discontinuities.

_ v _ v
A-(3) « <s: —&,,0 = —aa,v:Tph>, A-(1) — (s: —£,,0 = —0,, 0 = Vo—Tph>,
_ =1 (5= _ - _1
83(’1) — E (03(77) 03)7 &= E, (Ga + 63) (32)
_ n—0
BG) { osln) = —outios VAT " o= -a,
U:%Vphﬁ*%,g—bfll’]:%Vo, U:%
where
n= v oEVy — 20, > 0.
The limiting case n — 0 is analyzed in an explicit manner in (32) and in what follows.
The phase boundaries propagates left and right with the speed P, < C; given by relation
5 E| \/o3+n*— a5 40
Pl =L YSII — Gy, (33)
0 Jai+ 1 +o3
At time ¢, = Cil an elastic compressive shock arrives at the rear surface of the target and reflects as an

unloading wave (Fig. 11a). The solution in the adjacent region O-(6) is determined as solution of a left
Goursat problem with initial data A-(3) and free stress end condition. We get

0-(6) < (¢=0,0 =0,v=Vp). (34)

The unloading shock wave intersects the right propagating phase boundary at the point R,(X>,15),
where

_21Pi(n) 2
Kol =& 0 = E A

The question is what is the effect of this interaction. The answer is obtained by solving a Riemann prob-
lem with the left state B-(5) and the right state O-(6) (Fig. 11). The solution is obtained by intersecting the
monotone increasing curve v = H}(o; 8§,a§,%) passing through the point (aﬁ,%) with the monotone

decreasing curve v = Hy(0;0,0, V) passing through the point (0, V), given by relations (20) and (22),

> 1. (35)
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v=H}(6:0.0,Vop)

v=HR16:0,0.V,)

M v
V=HL (G,'EE,G}; 42))

v=H(6:0.0.V,)

g

Fig. 12. Solution of the Riemann problem at point Ry(X>,1,). Intersection of the curves v = H]LVI(O‘; €55 O VTO) and v = Hf;(a; 0,0,Vpn);
local space-time diagram; stress—strain states. Capital letters denote stress—strain states; encircled numbers denote stress—velocity states.
{(a), (b), (c)} Case Vj € (Vph, Vow)—backward propagating phase transformation. {(d), (e), (f)} Case V; € [V, Viw]l—stationary phase
boundary .#~ < /. {(g), (h), (i)} Case V> Viy)—forward propagating phase transformation.

respectively. While the second curve can be considered as a fixed one in the v—¢ plane, the first curve de-
pends on the impact velocity Vj in a way which is illustrated in Fig. 12.
Let us introduce the following critical values of the impact velocity

46,(03 + 20,,) 46,(03 + 20,)
Viw =V — < V=V —_—. 36
= i o+ da) < T o - 40,) ()

The interaction at R,(X>,%,) between the propagating phase boundary with the elastic unloading shock
front leads to a reflected and transmitted elastic shock waves propagating with speed C; and to a propa-
gating phase boundary. Depending on the magnitude of the impact velocity V this phase boundary be-
haves as follows:
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a) propagates backward if Vi, < Vo < Vi, (Fig. 12b),
b) is stationary if Vi < Vo < Vi (Fig. 12e),
¢) propagates forward if Vi, < Vy (Fig. 12h).

. M _ ol _ & 1 N . . . . . m_ o'm+{7§(11) 20, G
Indeed, if H)' (—0,; &5, 05,7%) < Hy(—0,;0,0, V), which is equivalent with 5 et R

i.e. Vo< Vpy, then the two curves meet at the point (¢*,0") denoted by (7), where ¢ > —a,, (Fig. 12a).
Therefore, the particles which at r =1¢, and X > X, lay in the state O—@ reach the state 5-@ due to an
elastic shock wave in the phase .. The particles which at # =1, and X < X; lay in the state B-(5) reach
the state ﬁ-@ by an elastic shock wave in the phase .#~ and a backward propagating phase boundary
(Fig. 12b). _

If the impact velocity Vj increases then the graph of the function v = H}'(o; ¢, og,%) moves up. Thus,
for Vo= Vi, the graphs of the two curves, v = Hy(a;ag,ag,%) and v = Hy(0;0,0, V), intersect each
other in their linear part so long as H}'(—0y; &5, 05, %) < Hg(—04;0,0, V) (see Fig. 12d), which is equiv-
alent with condition ¥ < V4. The intersection point (¢*, v*) has the property that ¢* € (—o,, —0,,) and as a
consequence the particles in the neighborhood of X = X, will not change their phases. The solution will
consist of two left and right propagating elastic shock fronts in each of the two corresponding phases,
M~ and o7, respectively and a stationary discontinuity (Fig. 12¢). This stationary discontinuity will persist
so long it will not interact with another strain discontinuity.

If the impact velocity V> Vi, then the solution (¢*,v") will be obtained by intersecting the linear part of
the curve v = H)'(; &5, 03, %) with the nonlinear part of the curve v = Hy(0;0,0, V) (see Fig. 12g). In this
case 6" < —a,. Therefore the particles which initially were in the phase .#~ will change their state due to an
elastic shock front, but remaining in the same phase, while the particles which were in the phase .o will
change their phase to .#~ by an elastic shock wave and a forward propagating phase front with speed
P, (Fig. 12h).

Let us continue the description of the solution when at the point Ry(X>, 7,) the propagating phase bound-
ary starts to move backward, i.e when V, € (Vph,Viw). We shall now focus on the limiting case when
Vo — Vpn + 0, (or equivalently when n — 0+) and on its physical meaning.

In order to get the solution we have to solve Riemann problems and left Goursat problems in stress at
the points marked with filled circles on Fig. 13. Besides the stress, strain and velocity states given by rela-
tions (32) and (34) which correspond to the regions shown in the time-space diagram in Fig. 13 we get the
following wave structure.

At the point Ry(X»,1,) the solution of the Riemann problem with constant left state B-(5) and constant
right state O-(6) generates a backward propagating phase boundary separating the states

e5(n) = z-o5(n), 6=~ i
— (1=20m—03)(\/ G2 +n*+n)+03 n—0 . .
D-(7) < o5(n) = 2[4;+2rr341*3\/zr§+r72J ST 0= (37)
— — _ 1 _ — Tm03
UD(n) o Vph V ek JD(yD’ v Vph + 0| (40m+03)
() = —ém, €= —&n
n—0
M' — Gﬁ(n) = —Om, — 0= —0p, (38)
. _ =20+ a§+1127<73 . o
W) =V TR e e

The slope of the backward propagating phase boundary is given by

_E; op(n)+o, 5 E, 402

—0
== i, " P0) = — m : 39
Q Gﬁ(”) +E18m v 2( ) 0 E18m(46m + 63) — 0,03 ( )

P3(n)
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V=Y

Fig. 13. Wave propagation in the flyer and target after impact—V, € (Vph, Vbw). Behavior of the backward propagating phase
boundary. (a) +—X diagram, (b) stress—strain states ahead and behind discontinuities.

At the point R3(X3,13) (see Fig. 13a), where the elastic unloading shock front propagating in the material
lying in phase .#~ catches up the left phase boundary, started at O(0,0), we have to solve a Riemann prob-
lem with constant left state A<(4) and constant right state M- (8). The solution consists of two propagating
left and right shock wave fronts and a stationary phase boundary which separates the constant states

ex(n) = g (o5 (n) — 03), &= —tn
— n—0
F-@(—> Jf(”l) :411(\/ J§+n2_0—3 _17) — O, - 0= —0y, (40)
. _ \/ a§ +172—a3+3n—4ay _ __om
vE(n) = Ve + i v="pn N
ep(n) = E%“E(ﬂ)a &= —5 Op,
_ n—0
E-<—> O-E(r]):%(\/ §+172—03—17)—U”1, — 0= —0Op, (41)
A /zr2+17270" +3n—day, O
UE(") = VPh+W’ v= Vph_ 0E}

At the point Ry(Xy = [,t4) (Fig. 13a) where the elastic loading shock wave reflected at Ry(X>,1,) by the
phase boundary reaches the free end of the target we have to solve a left Goursat problem in stress with
initial condition D~(7). The solution will consist of an elastic unloading shock front separating the constant
states D~(7) from

20’—(17)) 0 ( 26,03 )
o- —0,6=0,0= VD —0,0=0,0=Vpy +——mP 42
@ ~ <8 =R E YT g ) T e T e e o + 03) e

At the point Rs(Xs,ts) (Fig. 13a) the forward propagating elastic shock front generated at R3(X3,3) inter-
acts with the backward propagating phase boundary. The wave structure is found by solving the Riemann
problem with constant step data F-(9) and D-(7). We get that the phase boundary continues to propagate
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backward, (but with a lower velocity, since o5(17) < o5(n) (Fig. 13b), while the elastic shock front is re-
flected and transmitted across it bounding the regions with constant states

e5(n) = £og(n), 6= =g it

G-@ —{ ogln) = LReime, e R (43)
v (1) = Ven = —z=05(1), S T
exi() = —ém, &= —¢&y

M-(13) << og(n) = =0, = o= o, (44)
vﬁ(n)szh+%, V="V — &

The unloading shock wave reflected at z4 by the free end of the target (Fig. 13a) interacts at the point
Re(Xs,t6) with the shock wave transmitted at ¢5 by the backward propagating phase boundary. Therefore,
we have to solve a Riemann problem with the initial data corresponding to G- (12) and O-(11), respectively.
The solution consists of two propagating left and right shock wave fronts which are separated by the
constant state

en(n) =z (o5(n) — o5(n)), e=0,
H-@) « 3 on(n) = o5(n) — o5(1), = e=0, (45)
vg(n) = Von — ﬁ(aa(n) + a5(n)), v= Vo + ﬁ

At time ¢ = t7 (Fig. 13a) an unloading shock wave reaches again the free end of the target bar and is re-
flected leading to the following solution of a left Goursat problem

26—(17)> =0 ( 20,03 )
O-(1)« [e=0,0=0,0="V,, — —1 — |e=0,0=00=Vp+—— 46
®-( " ek Vo, o) @Y

The procedure can continue in the same manner in order to determine the complete solution of our im-
pact problem. We can now summarize the behavior of the two bars when the impact velocity is only a bit
larger than the value necessary to induce a phase transformation at the impact end.

First, the unloading shock wave reflected, at the free end of the specimen, interacts successively with the
right and left propagating phase boundaries changing the first one into a backward propagating phase
boundary and stopping the second one. The change in acoustic impedance of the material across a phase
boundary produces the reflection of elastic shock waves across it. As a consequence the presence of a trans-
formation can be detected by recording the changes in the velocity profile at the end of the target X =/
According to (37) and (45), the first loading shock wave, reflected by the phase boundary at R,(X>,?,) in-
duces at the free end of the target at time 74 a significant step-like increase of the velocity. No increase in
particle velocity would be expected at this moment if no phase transformations would occur. Moreover, so
long as the phase boundary exists at the left end of the target any round trip propagation of the first pulse
between the phase boundary and the free-end of the target will lead to a new significant increase of the par-
ticle velocity at X = [. On the other side, between these time moments we can also observe at X =/ small
fluctuations of the particle velocity. These are due to the elastic shock waves propagating inside the trans-
formed zone and which are transmitted across the phase boundary.

Let us analyze now the limit case when Vo — Vi, Vo> Vip, 1.6. § — 0, n > 0. The behavior of the solu-
tion, illustrated in Fig. 14, is obtained by collecting the results described in relations (32)—(46) for n — 0.
The elastic model, coupled with the chord criterion, predicts that as soon as the impact velocity overcomes
the critical value V,,, a phase boundary starts to propagate in both bars. When n — 0 the speed of the
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a b

Fig. 14. Wave propagation in the flyer and target after impact. The limit case V= V,, + 0. (a) +—X diagram, (b) stress—strain states
ahead and behind discontinuities.

phase boundary is going to zero and the strain-stress state of the transformed material is going to
Q(— & L (6, + 03), —0,) (see Fig. 14b). In other words, according to (32), the slope of the straight line con-
nectlng the nucleation strain-stress state A(—¢,, —0d,) and the transformed strain-stress state B(—¢g, —075)
becomes horizontal.

At the time 7, when the unloading shock wave reflected at the free end of the target starts to cross the
transformed material the thickness of the transformed zone is of the order of (X, — X3 = Z5). At this mo-
ment a reverse phase transformation .#~ — .o/, starts to develop and a backward propagatmg phase
boundary starts to advance into material lying in the .#~ phase. It is interesting to note that, according
to (39), the reverse transformation can not propagate faster than a limit speed value given by P,(0). This

corresponds to the straight line connecting the states M(—éy, —0y,) and L(— Ell o — ) (Fig. 14D).

We are interested to determine what happens when the backward propagating phase boundary in the
target interacts with the stationary phase boundary generated in the flyer. It is obvious that, when
n — 0, we can assume that the backward propagating phase boundary moves with the constant speed
P»(0) <0, and using relations (41) and (43) we can approximate the solution at the left of the intersection

point of the two phase boundaries by the constant strain-stress state N(—2, —g,,) and velocity
v="Vp — 0 o Om and at the right of the intersection point by the constant compresswe strain-stress state

f(—Ei] e 4:’_’;?@) and velocity v = V, + V* (see point I in Fig. 14a and its zoom in Fig. 15a) where

1 0,03
B VQEI 4am +G3 .

The solution of the above Riemann problem will consist in two unloading elastic shock waves propagating
left and right, respectively and bounding a region in the time-space diagram where

£=0,0=0, v="Vpu. (48)

*

(47)

Therefore, around the time ¢ ~ C—, which corresponds to a round trip through the thickness of the target of
the initial pulse, two parallel shock waves discontinuities very close each other are generated near the con-

tact point (Fig. 15a). The first one propagating right is a Joading shock and is due to the interaction between



C. Faciu, A. Molinari | International Journal of Solids and Structures 43 (2006) 497-522 519

AS < -7 A
S e O;v= Vh t t P
S o p O;V:Vph PR
om) S -7 om)
W L v=Vy+VETS tg{z L v=V,#VE
- ~
\\\ Phe .\\ ,’
0:v=V; @ o3l AT o e
. R ph Cl Cl V= Vph+2 ,‘\Q % Vph
P \\O' - ~
L v=VavE SO @ L v=V+V* h
// \\
- O;v=
-7 0;v=V ph \\\
- ~
/’ \\
—_— e ———E
L x 0 X
a b c

Fig. 15. The limit case ¥ = Vp,, + 0. (a) Zoom of zone I in Fig. 14a. Interaction between backward propagating phase boundary and
the stationary phase boundary. (b) Zoom of zone 11 in Fig. 14a. Reflection of the “elastic pulse” at the free end of the target bar. (c)
Zoom of zone III in Fig. 14a. Reflection of the “‘elastic pulse” at the impact end of the target bar. Capital letters denote stress—strain
states in Fig. 14b.

the first elastic pulse with the phase boundary, while the second one propagating also right is an unloading
shock wave and is due to the interaction between the two phase boundaries which disappear. These two
shock fronts form in the space time diagram a narrow strip whose order of magnitude is proportional with
1. Inside this strip we have the compressive strain-stress state L.

The above two discontinuities arrive at the free end of the target at a time ¢ ~ g—f (point I in Fig. 14a) and
the solution corresponding to this interaction is determined by solving Riemann and Goursat problems at
the point marked with filled circles in its zoom in Fig. 15b. Therefore, an infinitesimal transformed zone
induced by impact at the left end of the target leads to an unusual increase of the particle velocity at the
free end of the specimen. This will be recorded like a small pulse of the velocity for a time interval propor-
tional with 7. The two shock discontinuities are reflected by the boundary X = /. The first one will arrive at
the left end of the target X = 0 (point 111 in Fig. 14a) as a tensile wave (the strain-stress state inside the strip

(1) ()
E| 40,+03 7 4o,+03

bars. Thus, the time of separation is around fg = é—f. The way these shock discontinuities are reflected by
the left end of the target is illustrated in Fig. 15¢ where the solution is determined by solving Riemann
and Goursat problems at the points marked with filled circles.

Therefore, another indication of the existence of a phase boundary at the impact face is an abrupt
change of the time of separation of the two bars. Indeed, according to the above bar theory when the pro-
jectile is longer than the target bar and E| = E3, the separation of the two bars should appear, at time r = 2
if the contact is elastic, i.e. when V < Vpp, and at time ¢ = C L when V=V, + 0 and an infinitesimal part
of the impact region suffers a phase transformation. Thus, an experimental investigation on the influence of
the impact velocity on the time of separation could clarify some aspects connected with the dynamic nucle-
ation of phases.

Another indication of the existence of a phase boundary at the impact face is the periodic increase of the
particle velocity at the free end of the target which is associated with the arrivals of the elastic pulses at this
border (see for instance Fig. 16). This result is in agreement with experimental observations as those per-
formed by Escobar and Clifton (1995).

propagating now left is positive, i.e. L( ) in Fig. 14b), leading to the separation of the two
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Fig. 16. The limit case Vo = V,, + 0. Effect of phase transformation: changes in the free-end velocity of the target bar associated with
the arrivals of the elastic waves.

6. Summary and concluding remarks

The aim of this study is to provide a complete theoretical and numerical analysis on the wave structure
predicted by the elastic model versus a general rate-type viscoelastic approach when we consider the lon-
gitudinal impact of two phase transforming bars. This analysis allows, on one side, a qualitatively and
quantitatively comparison between the solutions described by the two models and, on the other side, give
suggestions on the way these results can be used to interpret laboratory experiments.

In this first part, by using a piecewise linear non-monotone elastic constitutive equation we investigated
solutions for the complete set of Riemann and Goursat problems. The non-uniqueness issue inherent to
such problems due to the non-convexity of the free energy function was eliminated by using the chord cri-
terion which, according to Part II (Faciu and Molinari, 2005), is furnished by our augmented theory. By
using systematically the solutions of the Goursat and Riemann problems we started to build the exact solu-
tion for a variety of impact conditions. We explored the interaction between elastic shock waves transmit-
ted and reflected across phase boundaries. We found critical values of the impact velocity such that the
impact-induced phase boundary continues to move forward after its interaction with an unloading elastic
wave, or comes to rest, or starts to move down the bar. We focus on the effect of these interactions on the
variation of the particle velocity at the free end of the target.

We studied in much more details the limiting case when the impact velocity overcomes a nucleation va-
lue. Interaction between the phase boundaries induced in the target and flyer in this case is investigated. We
derived that a direct consequence of this event is a sudden drop of the time of separation between the two
bars after their contact. This behavior is easily to be tested experimentally and can offer some insight on the
stress required for .o/ « .4+ phase transformation.

The solutions of the Riemann and Goursat problems derived here can also be used to built numerical
schemes of Godunov type (see LeVeque, 1990) for the elastic system of conservation law.

The first natural continuation of this paper is the investigation of the wave structure predicted by the
Maxwellian rate-type model when considering the same impact problem. The analysis of the similarities
and differences between the two approaches is investigated in Part II (Faciu and Molinari, 2005). The sec-
ond one concerns the modeling of thermal aspects accompanying the impact-induced phase transformation
which will be done in a future work.
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